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Abstract 
Many years ago, Karle & Hauptman proposed that the 
Patterson function could be used for data extrapolation 
beyond the observed range of the actual measured data. 
Few people have subsequently attempted to exploit this 
interesting idea, which might suggest possible limitations 
of this method, even in structural applications of modest 
complexity. This appears not to be the case, however, but 
the original ideas for implementing the extrapolation can 
be significantly improved. New calculation protocols 
indicate that Patterson maps may be used to extend 
observed data sets from 1.0 to -~0.5 A resolution with 
reasonably good precision. Correlation coefficients 
between the extrapolated F(hkl)'s and their structure- 
computed expected values typically range between 0.40 
and 0.70 across the unobserved range, even for structures 
containing as many as 600 non-H light atoms in the 
asymmetric unit. The method is equally good at 
extrapolating F values for small zones of data that may 
not have been recorded within the observed resolution 
range of the diffraction experiment. Furthermore, triplet 
phase invariants that incorporate one or two extrapolated 
terms are nearly as reliable as those formed using only 
the observed data. 

I. Introduction 
Direct phasing methods have recently experienced a 
substantial improvement with regard to the size of the 
structures that can successfully tackled. The Shake-and- 
Bake algorithm (DeTitta, Weeks, Thuman, Miller & 
Hauptman, 1994; Weeks, DeTitta, Hauptman, Thuman & 
Miller, 1994) has demonstrated the power of combining 
reciprocal-space phase refinement with real-space Fourier 
structure validation in the solution process. This new 
procedure has worked remarkably well for structures 
containing as many as 624 non-H atoms (Smith, 
Blessing, Ealick, Fontecilla-Camps, Hauptman, Housset, 
Langs & Miller, 1996) provided that native diffraction 
data are measurable to at least 1.2 A, resolution. Efforts to 
extend the use of these methods to diffraction data sets of 
lower resolution are an important consideration with 
regard to potential applications involving macromolecu- 
lar structures that do not diffract to atomic resolution. To 

address this issue, this paper has re-examined procedures 
that will allow a measured set of diffraction data to be 
extended to higher resolution with reasonable precision. 

2. Background 
Karle & Hauptman (1964) proposed an iterative 
procedure more than 30 years ago, whereby a sharpened 
origin-removed Patterson function could be utilized to 
extrapolate data beyond the resolution limit of the 
observed data. An I E(hkl)[ 2 - 1 Patterson was computed 
and modified by zeroing all negative grid-point inten- 
sities and expected void regions of the map and then the 
map was back-transformed to obtain new estimates of the 
[E(hkl)[ 2 -  1 coefficients, both for the initial observed 
data and for lattice points beyond the observed data 
range. Before computing the next iterative map, one 
ensured that no IE(hkl)[ 2 - 1 had values less than -1.0, 
and then rescaled the extrapolated data in incremental 
shells of sin 0/X to ensure that the shell average IE(hkl)l 2 
values were approximately 1.0. Values of IE(hkl)l z - 1 at 
space-group-extinct positions were presumably omitted, 
rather than included with default values of - 1.0 as would 
be done for an observed IE(hkl)l of zero. In practice, it 
was found to be expedient to gradually increase the range 
of extrapolation by only 10 to 20% after each refinement 
cycle and the procedure was reported to converge to a 
stable solution after a limited number of cycles. 

The original tests were performed using the P212~2 ~ 
Cu Kc~ data set for arginine dihydrate; the number of 
terms was expanded from 1406 measured data to a total 
of 2688 terms after six refinement cycles. The final 
[E(hkl)[ 2 -  1 Patterson map showed remarkably better 
peak resolution but the actual precision of the extra- 
polated E values was not objectively quantified. A 
subsequent paper (Karle & Karle, 1964) indicated that 
these extrapolated E values were useful for improving 
estimates of the three-phase structure invariants by means 
of the B3.0 formula (Karle & Hauptman, 1958) but no 
details of this analysis were given. 

One paper (Seeman, Rosenberg, Suddath, Kim & 
Rich, 1976) reports using this method to obtain better 
E(hkl) estimates within the observed set of measured data 
(i.e. without extrapolation). The authors were unable to 
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phase sodium adenylyl-Y,5'-uridine hexahydrate by 
Fourier methods that recycled the phosphorus site using 
their original set of scaled E values but were able to 
obtain a successful convergence after the E values were 
refined using the Patterson-map procedure described 
above. Apart from the above-mentioned references, no 
subsequent work appears to have been pursued to more 
exactly quantify just how well these procedures may self- 
validate a measured set of data or extrapolate values 
beyond the resolution limit of the diffraction experiment. 

3. Analysis 

A number of critical points were re-examined with regard 
to assessing the usefulness of Patterson maps in data self- 
validation and extrapolation. First, does sharpening the 
IF(hkl)l 2 coefficients actually improve the results? 
Second, how do various Patterson density-modification 
schemes compare and are there biases imparted to the 
extrapolated Patterson coefficients using certain 
schemes? And third, how useful are the extrapolated 
amplitude data? Can they be used actively in direct- 
methods phasing or does their limited accuracy only 
warrant that they be used in a more passive manner? And, 
lastly, at what limiting initial resolution might these 
methods prove ineffective? 

Our initial survey of these computational variables was 
performed on a panel of small-molecule Cu Ket resolu- 
tion structures containing 30 to "~ 100 non-H light atoms. 
The various refinement strategies were evaluated by 
comparing the computed correlation coefficients (CC's) 
between the extrapolated F(hkl) values and either (a) 
their observed measured values or (b) their unmeasured 
but 'known' true values computed from the refined 
structural parameters. 

CC's will have a distinct advantage over conventional 
R factors in quantifying this agreement. The average 
values of the F's in each sin 0/X range of reciprocal space 
will differ for observed/known versus extrapolated F(hkl) 
values, depending on the number of iterative cycles of 
refinement that are performed. In order to get the best R- 
factor agreement, the average extrapolated F's have to be 
rescaled to their average known values before the residual 
is computed, whereas CC's will have the same values 
regardless of the relative scales between quantities that 
are compared. A CC of 1.0 would indicate a perfect 
agreement between the compared values of two sets of 
data, a zero value would indicate that this agreement is no 
better than random, negative values would indicate the 
agreement is worse than random, i.e. large F's computing 
small and small F's computing large. 

Patterson coefficients exhibiting five progressive 
degrees of resolution-dependent sharpening were tested: 
(I) IF(hkl)12; (II) [IF(hkl)l/f(carbon)]2; (III) 
[IF(hkl)lexp(BeffS2)/f(carbon)]2; (IV) IE(hkl)12; and 
(V) IE(hkl)l 2 - I. Here, f(carbon) is the atomic scatter- 
ing factor for carbon or some appropriate weighted 

average of atomic types for the structure. B~ff is an 
effective isotropic temperature factor for resolution- 
dependent sharpening, which can be either higher or 
lower than the average scaled isotropic temperature factor 
of the data, and s is the value of sin 0/X for the particular 
reflection F(hkl). E values were obtained using the 
anisothermal scaling features (Blessing & Langs, 1988) 
built into the DREADD set of data-reduction programs 
developed by Blessing (1989). 

The most obvious judgment prior to modifying 
Patterson maps was first to assess whether the zero- 
density threshold proposed by Karle & Hauptman (1964) 
was optimal for discriminating those regions of the map 
that contained relatively few important Patterson vectors 
relative to the rest of the map. In addition, might there be 
better strategies for density modification that did not rely 
on a fixed threshold criterion? To ensure adequate 'peak' 
resolution, Patterson maps were computed with a 
minimal grid-interval size that was at least four times 
the maximum value of the reflection indices in each of 
the three dimensions. 

4. Results 

Resolution-dependent enhancement of the F(hkl) ampli- 
tudes markedly improved the accuracy of data extrapola- 
tion from the Patterson function. Two undesirable 
characteristics noted for unsharpened IF(hkl)l: map 
refinements could be minimized as the data were 
progressively sharpened. For the smaller test structures 
having --~ 100 or fewer non-H atoms: (a) the extrapolated 
IF(hkl)] 2 for unobserved data quickly exceeded their 
known true target values in as few as three or four cycles 
of refinement; and (b) the most negative features of the 
initial observed Patterson map tended to persist as 
refinement proceeded and the contribution of the 
extrapolated 'unobserved' amplitudes to the synthesis 
increased. When []F(hkl)[/f(carbon)] 2 coefficients were 
used: (a) the extrapolated magnitudes of the unobserved 
data grew more slowly and approached their true values 
in about five to ten cycles; and (b) the most negative 
features in the initial Patterson map tended to become 
less negative by about 30% when convergence was 
achieved. 

For the third set of tests, protocol (III), the data were 
further sharpened using an effective isotropic B value. 
Optimal results were obtained when Bef f was set 
approximately equal to Bmin, the lower limit of the 
isotropic B values of the structure. The CC's between 
extrapolated unobserved data and their known true values 
were significantly higher as compared to results obtained 
by protocols (I) and (II) or using Bef f values that were as 
little as 4-1.0 units from Bmi n. For most of the data sets 
examined, Bmi n was 2.0 to 5.0 units less than (Biso), the 
average scaled isotropic B value estimated from the data. 
For the refinements with B~. equal to Brain, the sin0/X 
shell-averaged values of the extrapolated amplitudes of 
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the unobserved data approached, but usually did not 
exceed, their true values after 20 or more iterative cycles. 
At the end of the refinement, the most negative features 
of the Patterson map (prior to density modification) were 
usually 50% or less of their values from the initial map 
computed with only observed data. 

Results obtained with protocol (IV), which employed 
anisotropically scaled IEI 2 values were only slightly 
better or worse than those obtained using protocol (III) 
with Bef f equal to (Biso) , and significantly worse than 
those obtained setting Bef f equal to Bin:. Results from 
protocol (V), which used the [E(hkl) f -1  Patterson, 
were also not quite as good as those obtained by protocol 
(III) with Bef f equal to Bmi n. 

It also became clear that it was more advantageous to 
extrapolate values for all data from the beginning rather 
than to increase the resolution gradually each cycle until 
about twice the number of  data had been accessed. It will 
be shown that it is often possible to extend the useful 
range of resolution from twofold to about fivefold the 
number of data by refining the full set of accessible 
extrapolated values in each refinement cycle. 

Apart from sharpening the coefficients of the Patterson 
maps, it was quickly determined that better extrapolation 
results could be obtained if, early in the recycling 
procedure, the critical threshold was raised significantly 
above the zero level of the map. As in the case of the 
earlier studies, maps were computed excluding the 
F(000) term for this purpose. As a rough rule of thumb, 
if the most negative feature in the initial observed 
Patterson map was - N  units, it was found effective to 
zero all the features that were less than a positive 
threshold of +2N units in the first refinement cycle. Over 
the next M cycles of refinement, this threshold was 
progressively lowered by -3N/M units until it reached 
the value o f - N  units observed in the original map. 
More elaborate density-modification schemes were not 
thoroughly investigated at this time. 

This sliding threshold procedure had two major 
advantages as compared to using a fixed zero threshold 
in each cycle. First, the percentage of negative extra- 
polated data rapidly approached zero by the last cycle; 
this was especially so if one did not allow the observed 
data terms to refine in each cycle. Second, the accuracy of  
the extrapolated refined values of the unobserved data 
was markedly improved as judged by CC's computed by 
our test examples. 

The extrapolation results provided by two large test 
structures is reported: (i) gramicidin A, N = 317 non-H 
light atoms (Langs, 1988); and (ii) scorpion toxin-II 
(Androctonus austalis Hector), N = 624 non-H atoms 
(Fontecilla-Camps, Hebersetzer-Rochat & Rochat, 1988). 
Both structures are orthorhombic P2~2~2~ and diffract to 
0.86 and 0.96 A resolution, respectively. The gramicidin 
data set contained 21 454 independent reflections and is 
essentially complete, lacking only the lowest-order 
F(I10)  reflection. The toxin II data set contained 

Table 1. Protocol (III) gramicidin extrapolation results 
are compared to those obtained by the older IE21-1 

procedure 

The data are arranged in approximate equal population shells based on 
the increasing value of sin0/~. (A-~). The correlation coefficient (CC) 
and number of data (~) in each shell are given as well as the cumulative 
number of data (SUM:/) that are accessible to that limit of resolution. 

Protocol(Ill) Old IE2I- 1 method 
sin0/Z :/ CC SUM~ ~ CC SUM~ 

0.237 3779 1.000 3779 3711 0.900 3711 
0.364 3624 1.000 7403 3559 0.916 7270 
0.433 3586 1.000 1 0 9 8 9  3538 0.966 10808 
0.485 3550 1.000 1 4 5 3 9  3529 0.955 14337 
0.527 3562 1.000 18101 3555 0.964 17892 
0.563 3353 1.000 21454 3347 0.970 21239t 
0.596 3531 0.388 3719 3409 0.406 3409 
0.625 3520 0.417 7239 3434 0.416 6843 
0.652 3498 0.425 1 0 7 3 7  3444 0.364 10287 
0.677 3539 0.474 1 4 2 7 6  3509 0.366 13796 
0.700 3482 0.478 1 7 7 5 8  3455 0.370 17251 
0.721 3513 0.556 2 1 2 7 1  3484 0.329 20735 
0.741 3500 0.616 24771 3472 0.312 24207 
0.761 3505 0.591 28276 3494 0.335 27701 
0.779 3485 0.580 3 1 7 6 1  3472 0.322 31173 
0.796 3464 0.567 35225 3446 0.280 34619 
0.813 3543 0.562 38768 3537 0.235 38156 
0.829 3461 0.601 42229 3450 0.304 41606 
0.845 3482 0.625 45711 3477 0.305 45083 
0.860 3451 0.607 49162 3450 0.266 48533 
0.874 3514 0.657 52676 3513 0.233 52046 
0.888 3491 0.667 56167 3490 0.202 55536 
0.902 3478 0.667 59645 3479 0.197 59015 
0.915 3493 0.698 63138 3491 0.183 62506 
0.928 3453 0.713 6 6 5 9 1  3454 0.206 65960 
0.940 3503 0.674 70094 3509 0.144 69469 
0.952 3456 0.691 73550 3457 0.125 72926 
0.964 3451 0.662 77001 3460 0.100 76386 
0.972 904 0.692 77905 904 -0.031 77290 

t Limit of observed data. 

31 001 reflections and is about 90% complete, lacking 
an inaccessible cone of data coincident with the c axis of 
the crystal. 

Both data sets were refined by protocol (III) with Bmi n 

equal to 4.0 A 2 using the sliding density-modification 
threshold described above. Patterson maps for both 
structures were computed on a 128 x 128 x 128 grid 
and the observed data were extended to a maximum 
resolution of 0.5 A. The gramicidin data required 20 
cycles of refinement for optimal convergence, the larger 
.toxin II structure required 40 cycles. Parallel calculations 
were performed for the gramicidin data using the 
[El 2 -  1 Patterson method outlined by Karle & Haupt- 
man (1964). CC comparisons for the extrapolated data of 
the two gramicidin refinements are shown as a function 
of increasing sin 0/~ in Table 1. The toxin-II extrapola- 
tion results are given in Table 2. 

An important question to be answered is whether these 
extrapolated E values form reliable triplet invariants that 
are good enough to be actively used in a direct-methods 
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Table 2. Toxin-II extrapolation results after 40 re[inement 
cycles 

Columns are labeled similar to those in Table 1. 

Observed agreement Extrapolated agreement 
sin 0/;~ ." CC SUM~ sin 0/)~ ." CC SUM;~ 

0.214 5804 1.000 5804 0.158 211 0.698t 211 
0.325 5597 1.000 11401 0.328 218 0.211 429 
0.387 5452 1.000 16853 0.388 307 0.054 736 
0.433 5249 1.000 22102 0.435 445 0.146 1181 
0.470 4800 1.000 26902 0.472 917 0.175 2098 
0.502 4099 1.000 31001 0.507 1575 0.104 3673 

~ Agreement for the lowest-resolution shell of  extrapolated data from 
the missing data of  unmeasured reflections is especially good. 

Table 3. Breakdown of gramicidin triples containing O, 1, 
2 or 3 extrapolated E magnitudes 

The analysis is given for three progressively larger groups of  triples for 
which A >_ 0.8, 0.5 and 0.4, respectively. A = 2IEhEkEtI/N t/2, where 
h + k + l = 0 and N is approximately equal to the number of  equivalent 
non-H atoms in the unit cell. The number of  triples for each group based 
on the number of  extrapolated E values (fIX - E), the average A value 
(A) and the average theoretically expected and average actual true 
cosine invariant values for each group, (e(cos qb)) and (cos ~t~), are 
listed. The triplet estimates are particularly good when the ratio 
(cos d0tr)/(e(cos)) is equal to or greater than 1.0. The estimates may be 
deemed seriously in error when this ratio is significantly less than 0.5 or 
even negative as is indicated by the daggers 1+) in the rightmost column 
of  the table. 

,~X - E :triples (A) (e(cos~))  (cos~tr) Ratio 

A >_ 0.8 0 2526 1.03 0.472 0.475 1.01 
1 1143 1.08 0.491 0.444 0.90 
2 1582 0.997 0.455 0.311 0.68 
3 23 0.893 0.409 -0 .402  -0 .98+ 

A >_ 0.5 0 17805 0.658 0.330 0.320 0.97 
1 9413 0.648 0.327 0.260 0.80 
2 11866 0.651 0.324 0.196 0.60 
3 620 0.578 0.282 0.071 0.25"t" 

A >_ 0.4 0 40546 0.537 0.278 0.264 0.95 
1 26146 0.515 0.266 0.197 0.74 
2 27790 0.530 0.272 0.157 0.58 
3 2142 0.479 0.238 0.073 0.31t 

t Ratio is significantly less than 0.5. 

phase determination to improve our chances of obtaining 
solutions. Table 3 lists the average values of the 
gramicidin cosine phase invariants, (cOStr), for triples 
that contain one, two and three extrapolated E values and 
compares them to their average II(A)/Io(A ) expected 
values ((cos)). 

5. Discussion of  results 

Table 1 shows that the CC comparison for extrapolated 
data is significantly better using protocol (III) as 
compared to the older [E 2] - 1 method. Values for the 
new procedure vary from 0.39 to 0.71 in comparison to 
0.41 to -0.03 from the older method for the unobserved 
extrapolated range from 0.86 to 0.5 A resolution. It 
would appear to be logical that this agreement should be 

best for those extrapolated data that are closest to the 
observed sphere of measured data, as is indicated by the 
IE2I-  1 analysis. It is quite surprising that the protocol 
(III) CC's actually improved quite significantly at higher 
resolution, and had the four highest CC values (0.698, 
0.713, 0.674, 0.691) in the four contiguous resolution 
shells in the range 0.525-0.546 A (0.915-0.952 A-x). 
Perhaps this is due to the average lower temperature of 
the main-chain atoms of the helical backbone of this 
structure, which is perhaps more dominant in the 
scattering at higher resolution, but it does not explain 
why the [E2[-  1 method cannot take advantage of this 
fact. It may be noted from the toxin-II test example in 
Table 2, however, that extrapolation to higher resolution 
may be quite difficult if a significant percentage of the 
low-resolution terms in the observed Patterson map are 
missing. Although the lowest-resolution shell of the 
missing data appears to be reliably estimated with a CC 
of 0.698, i.e. the 211 terms indicated by the dagger in 
Table 2, CC's beyond this resolution limit seldom exceed 
0.20 as long as these potentially large magnitude terms 
are omitted from our initial Patterson map. 

The original gramicidin structure determination used 
1500 phases and 17 500 triples with A >_ 0.5. The 
tangent-formula solution gave 1320 phases with an 
absolute mean phase error of 39'. The E map revealed 
105 true atom sites in the top 150 peaks. If more than 
1500 phases or triples having A values less than 0.5 are 
used, the solution rapidly degrades and becomes 
unidentifiable. This instability is demonstrated by input- 
ting the known phases of the structure and performing a 
number of cycles of tangent-formula phase refinement 
until convergence is noted. 

After data extrapolation, the top 3000 E values were 
used to generate 96 624 triples for which A was equal to 
or greater than 0.4. These 3000 E values consisted of 
1519 observed and 1481 extrapolated, previously un- 
observed, data. The triples that contained as many as 
three extrapolated E values were considered to be too 
unreliable, as is indicated by the bottom-most dagger in 
Table 3, so these 2142 triples were deleted from the list 
prior to phasing. The solution now gave 2599 phases 
with a mean absolute phase error of 35 :. If only those 
1477 terms among the original top 1500 E values are 
examined, the mean absolute phase error is only 28 ~, as 
compared to 39 v obtained previously. The resulting E 
map revealed 119 atoms in the top 150 peaks. Thus, it 
has been demonstrated that a smaller phase error and 
better map details can result from using additional 
extrapolated data in the direct-methods process. 

Efforts to extend the use of these methods to initial 
data sets of lower resolution, say 1.5 A, have not been as 
successful but will doubtless have an important impact 
on direct-methods phasing applications of larger macro- 
molecular structures. Although the CC's for 1.5 
resolution test structures seldom exceeded 0.10 for all 
but the closest shell of extrapolated values nearest to the 
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observed data, we are hopeful that more powerful 
strategies may be developed to further this goal. 

We thank Drs Juan Carlos Fontecilla-Camps and 
Dominique Housset for the use of the 0.96 A scorpion 
toxin-If data. Results of the ab initio direct-methods 
determination of this 624-atom structure are reported 
elsewhere (Smith, Blessing, Ealick, Fontecilla-Camps, 
Hauptman, Housset, Langs & Miller, 1997). Research 
support from NIH grant GM-46733 is gratefully 
acknowledged. 
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